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Origin of quantum chaos for two particles interacting by short-range potentials

M. Van Vessen, Jr., M. C. Santos, Bin Kang Cheng, and M. G. E. da Luz*
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We address the problem of two confined one-dimensional particles of arbitrary masses interacting by general
short-range potentials. We study under what conditions quantum chaos emerges for the system by analyzing its
spectrum statistics. We show that these conditions are directly connected with a specific feature of the under-
lying classical dynamics, namely, the ergodicity in the changes of the particles momenta. Quantum mechani-
cally this prevents one from obtaining the exact wave function through the Bethe ansatz. Possible extensions
for many-body systems are also discussed.
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In general, the emergence of quantum chaos in a sin
particle system is a direct consequence of two factors,
spatial geometry and the form of the external potential.
N-body problems, however, the mutual interactions also p
a fundamental role@1#. In this respect we can cite the prop
erties of two-@2# and multielectron atoms@3#, chemical re-
actions@4#, quasiparticle dynamics in trapped Bose cond
sates@5#, and fermionic systems@6#. It has also been pointe
out that some chaotic features in semiconductor heteros
tures and quantum dots are due to the Coulomb pote
between the electrons@7#.

For a system of many interacting particles, one expec
to be very difficult to determine~i! the exact key mecha
nisms generating quantum chaos;~ii ! how such mechanism
are related to the underlying classical dynamics; and~iii !
how to control them through relevant parameters. Need
to say these are not questions of only theoretical inter
they can have practical importance. For instance, chaos
prevent a system being used as a quantum computer@8#, so
to understand what originates chaos in the system may
fundamental to overcome the problem@9#. A simpler case
where the above points may be answered is forN52. In-
deed, some aspects of quantum chaos in two-particle p
lems have been analyzed@2,10#, but as far as we know, ques
tions ~i!–~iii ! have not been addressed in the literature.

In this contribution we discuss the problem of two pa
ticles that interact through repulsive short-range potenti
From numerical calculations and some analytical results
characterize the situations where quantum chaos occurs
comparing the quantum with the corresponding classical
tems we find a direct connection between the chaotic beh
ior in the former and a specific feature of the latter: the la
number of different momenta the classical particles can h
~which is connected to the form of the interaction and
values of some parameters!. We argue that this proliferation
of different momenta prevents one from obtaining in t
quantum case the system wave function by the Bethe an
Finally, we discuss possible implications of our findings f
similar many-body problems.

We consider two spinless one-dimensional~1D! particles
of massesm and gm, interacting via a potentialV(ux1
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2x2u) which vanishes if the distance between them is grea
than d/2. We shall analyze two different types of confin
ment for the particles, leading to the boundary conditio
C(x150 or L,x2)5C(x1 ,x250 or L)50 ~box case! and
C(x11L,x2)5C(x1 ,x21L)5C(x1 ,x2) ~torus case!. The
particles have the wave numbersk1 and k2 with E5\2(k1

2

1k2
2/g)/(2m). For g51 the eigenfunctions of the system

are either symmetric or antisymmetric with respect to
interchangex1↔x2, so we have bosons, fermions, or disti
guishable particles simply by choosing~or not! a particular
symmetry ofC. In all the numerical calculations we will se
\5m5L51.

We start withV5ld(x12x2). For g51 the Bethe ansatz
provides the exact wave functions for both torus@11# and
box @12# cases. ForgÞ1 we numerically solve the Schro¨-
dinger equation. From the eigenvalues we calculate the s
trum level spacing distributionP(s) and the rigidityD̄3( l )
@13#. We have tested different values ofl andg. For g51,
as it should be, the level statistics analysis show characte
tics of integrable systems for all cases~for the box case see
also @14#!. The same is observed for the torus case withg
Þ1. However, for the box case withgÞ1 the spectrum sta
tistics can have characteristics of chaotic quantum syst
for l not too small~see the discussion later!. A typical result
is displayed in Fig. 1@as is usual, we use only states with th
same spatial symmetry to make the level statistics, wh
here are the states symmetric under (x1 ,x2)↔(L2x1 ,L
2x2)#. So for ad interaction it seems thatgÞ1 is essential
to obtain chaotic behavior. Furthermore, the box type
boundary condition also plays an important role since th
is no quantum chaos for the torus case.

We now analyze a general short-rangeV. For it we con-
sider the center-of-mass and relative coordinates. In the t
dimensional configuration spacex1-x2, the system is re-
stricted to a square region with corners (x1 ,x2) at A
5(0,0), B5(L,0), C5(L,L), and D5(0,L). For the box
case the four sides of this square are infinite walls, wher
for the torus case we have the equivalent sidesAB[DC and
AD[BC. We now setx5x12x2 , X5(x11gx2)/(11g),
m red5m/(11g21), and m cm5(11g)m. The square be-
comes a rhombus, whose sides are either infinite walls
equivalent two by two as above. The new boundary con
tions for the wave functions areCu walls50 ~box case! and
©2001 The American Physical Society01-1
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C(x,X)5C„x1L,X1L/(11g)…5C„x2L,X1gL/(11g!…
5C(x,X1L) ~torus case!. Defining k5(k12k2 /g)/
(11g21) and K5k11k2 then E5\2k2/(2m red)1\2K2/
(2m cm).

Let us discuss the torus case withg51, for which the
boundary conditions simplify to C(x,X)5C(x6L,X
1L/2)5C(x,X1L). This problem can be separated in
two one-dimensional systems. To solve them we us
Green’s function approach, based on a sum over scatte
paths@15#, which will be very instructive for our later dis
cussions. Figure 2~a! displays a few examples of what w
call vertical~parallel to thex axis! and horizontal~parallel to
the X axis! orbits. The vertical~horizontal! orbits are com-
posed of two branches, whose total length is always 2L (L).
If a particle is in one of the branches, say the left, of a giv
vertical orbit and goes up~down!, hitting the sideAB (AD),
then it comes out in the corresponding second branch f
DC (BC). Any of these trajectories can be mapped into
one-dimensional systems shown in Fig. 2~b!, which differ
from each other only by the relative location of the poten
V in the periodic region (2L/2,1L/2); see Fig. 2~c!. Thus,
they are all equivalent. Similarly, if a particle is in the upp
branch of a horizontal orbit and hits the sideAB (BC), it
comes out fromDC (AD) in the lower branch. For the hori
zontal orbits, neither of the two branches is in the region
action ofV ~recall that the dynamics of the center of mass
free!. All these orbits can be associated with a 1D rigid r
tator.

Based on@15# we can write the exact Green’s functio
for the first one-dimensional problem asG6(xf ,xi ,k)
5m red / ( i\2k ) ( SP(61)u SPW SP exp@iSSP(xf , xi ; k) / \ # ,
wherexi and xf are outside the region of action of the p
tential. The sum is performed over all the scattering pa
~SP’s! which are generated by multiple scattering due to
localizedV. Figure 2~b! shows some of these paths schema
cally. For a given SP, the actionSSP is k times the total

FIG. 1. The level spacing distribution and the rigidity~inset!
calculated with the first 1000 levels of a particular spatial symme
~see text! of the box case withd interaction andgÞ1. The dotted
and dashed curves represent, respectively, the theoretically exp
spectrum statistics for regular and chaotic systems. The nume
results show very good agreement with the GOE predictions.
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length of the particle’s trajectory~outside the potential re
gion! andWSP is the product of all the usual reflectionr and
transmissiont quantum amplitudes that the particle go
through along the scattering path.u is the total number of
times that a given trajectory crosses the border at2L/2[
1L/2. After classifying and summing over all the possib
trajectories we find „f5k(L2d), g65(17t exp@if#)2

2(r exp@if#)2
…

G rel
6 ~xf ,xi ;k!5

m red

i\2k

1

g6
„7g6 exp@ ik~xf2xi1L !#

1~612t exp@ if#!$exp@ ik~xf2xi1L !#

1exp@2 ik~xf2xi1L !#%6r exp@ if#

3$exp@ ik~xf1xi !#1exp@2 ik~xf1xi !#%….

For the rigid-rotator-like problem the Green’s function

y

ted
al

FIG. 2. ~a! For the circle case, two vertical and two horizont
representative orbits in the center-of-mass and relative coordin
for g51. The shadows represent the regions of action of the po
tial. ~b! Examples of SP’s in the system associated with the vert
orbits.~c! A set of equivalent points~by the wave function boundary
conditions! represented in a sequence of replicas of the rhom
region. We see that alongx the periodicity isL, justifying the peri-
odicity L of the one-dimensional systems in~b!. ~d! Some branches
of a vertical orbit in the case ofgÞ1 and ad interaction.~e! Part of
a raylike trajectory for the box case withg51 and ad interaction.
Observe that there are no longer independent vertical
horizontal orbits.
1-2
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ORIGIN OF QUANTUM CHAOS FOR TWO PARTICLES . . . PHYSICAL REVIEW E 64 026201
G cm(Xf ,Xi ;K) 5 (m cm / i\2K)$exp@iKuXf 2 Xiu#1exp@iK(L
2uXf2Xiu)#%/w, with w512exp@iKL#.

The energy eigenvalues are obtained from the poles of
Green’s functions, which are given by the roots oft
6r )exp@ik(L2d)#51 for Grel

1 , (t6r )exp@ik(L2d)#521 for
Grel

2 , and KL52np ~with n being an integer! for G cm .
Since for separable systems the total energy is just the
of the energies of each degree of freedom, we can writE
5Erel 1Ecm . By calculating the residues of the Green
functions at the energy eigenvalues one obtainsc rel (x) and
c cm(X), and thusC(x,X)5c rel (x)ccm(X). Here, how-
ever, some care is in order due to the particular form of
boundary condition imposed onC. In fact, the total wave
function must obey c rel (x)c cm(X)5c rel (x1L)c cm(X
1L/2). It is easy to see thatc rel

6 ~coming fromG rel
6 ) is such

that c rel
6 (x1L)56c rel

6 (x). Furthermore, c cm
(n) (X1L/2)

5(21)nccm
(n)(X). Therefore,C must be written either as

c rel
1 ccm

(n5even ) with energies E5E rel
1 1E cm

n5even or as
c rel

2 ccm
(n5odd), with E5E rel

2 1E cm
n5odd . These results give u

the exact solution for the torus case withg51 and a genera
short-range potentialV.

To verify the above expressions we have considered
case of a d-function potential, whered50, td5 ik/( ik
2s), r d5s/( ik2s), ands5m cml/\2. After simple cal-
culations we obtained all the exact solutions previously
rived in the literature@11#. We have also considered oth
types ofV, for instance, rectangular and triangular barrie
We computed the eigenenergies with these potentials num
cally and compared them with the energies obtained fr
our solution; we found a perfect agreement, as it should

For the torus case withgÞ1, in general the vertical orbits
do not all have the same total length and do not close
fectly @see Fig. 2~d!#. However, we can still solve this cas
exactly. Here we just write down the equations that give
correct eigenvalues~details will appear elsewhere@16#!,
exp@i(k11k2)L#51 and (t2exp@ik2L#)„t2exp$i@(12g)k1
12k2#L/(11g)%…5r 2, which reduce to our previous formula
for g51.

The box case is not separable into the center-of-mass
relative coordinates@see Fig. 2~e!#, but can still be solved by
the Bethe ansatz forg51 and ad interaction@12#. To ana-
lyze this same problem but for a short-rangeV we have nu-
merically calculated the spectrum considering a rectang
barrier, i.e.,V5V0 for ux12x2u,d/2 and zero otherwise. An
example of the level statistics for bosons is shown in Fig
indicating chaotic behavior~fermions present similar leve
statistics!. These results are not at all a surprise because
system is equivalent to a two-dimensional billiard proble
@17#, where the particle experiences different potentials
different regions of the billiard. In fact, it has been impl
mented experimentally by microwave cavities loaded wit
different dielectric medium@18# and shows the so called phe
nomenon of ray splitting, much studied in the context
quantum chaos@19#.

At this point it is worth summarizing our findings so fa
For the torus case, regardless of the value ofg and the form
of the interaction, we never see quantum chaos. For the
case and ad interaction, we have that forg51 the system is
02620
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regular and forgÞ1 it can present chaos~Fig. 1!. Moreover,
for a general short-range potentialV, e.g., a rectangular bar
rier, the box case may have chaotic spectrum statistics e
for g51.

In order to seek a connection between all the above res
and the corresponding classical dynamics we turn to the c
sical system of two impenetrable particles in 1D which h
been analyzed in different aspects such as ergodicity, mix
distributions of momenta transfer, etc.@20#. Here we just list
some results that are important for our purposes. If the c
sical particles interact only via elastic collisions, we have
relation between the momenta before and after the collis
by simple laws of conservation. Furthermore, the confi
ment of the particles, within a circle~in the torus case! or
inside a box, gives rise to infinitely many collisions, leadi
to a whole set of differentp’s for them. Thus, we have the
following @20#. For the torus case,~i! the particles recover
their initial momenta after two successive collisions for a
value of g. For the box case,~ii ! when g51 the particle-
particle and the wall-particle collisions lead top1

(a)5p2
(b) ,

p2
(a)5p1

(b) , and pj
(a)52pj

(b) , so in total each particle can
assume only four different values of momentum. ForgÞ1
andh5u/p „cos@u#5(12g)/(11g)…, ~iii ! for rationalh just
a finite set of distinct momentum pairs (p1 ,p2) can occur
and, ~iv! for irrational h, although all the possible (p1 ,p2)
are generated very slowly@20#, they can assume infinitely
many different values.

If the particles interact by a short-rangeV and scatter
elastically we have that~v! in both torus~any g) and box
(gÞ1) cases the results are similar to~i! and ~iv!. For the
box case withg51, ~vi! contrary to~ii !, proliferation ofp’s
can occur. To see this consider as interaction a rectang
barrier ~see above! and initially particles with kinetic ener-
gies greater thanV0. Assume the particles are less thand/2
apart and close to the right wall, going toward it. If particle
collides with the wall first, reverses its motion, and then h
particle 2, simple calculations show that when their distan

FIG. 3. The same plots as in Fig. 1, but now for the box ca
with a rectangular barrier interaction andg51. The spectrum sta-
tistics are made with the first 450 energy levels of the eigenst
symmetric under bothx1↔x2 ~bosons! and (x1 ,x2)↔(L2x2 ,L
2x1). Here we also see a fair agreement with the GOE predictio
1-3
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apart is greater thand/2 their momenta will not be given
simply by an exchange as in~ii !. Both particles will have
new momenta values, resembling what happens in the
of gÞ1. Repetitions of this process, which depends ond/L,
then generate a large set of differentp’s.

By putting all the previous results together we can est
lish a direct correspondencebetween the origin of chaos i
the quantum case and the ergodicity of the momenta in
classical case. In fact, we see that when classically the
tem has a finite~infinite! number of possible values for th
p’s the quantum system is always regular~chaotic!. To un-
derstand the origin of this correspondence let us conside
scattering wave function of two particles interacting by
general short-range potential. If particle 1 is initially on t
left of particle 2, we have~symmetrization considerations fo
boson and fermions, wheng51, are not relevant here!

c~x22x1.d/2!5~2p!21$exp@ i ~k1
(b)x11k2

(b)x2!#

1r ~k!exp@ i ~k1
(a)x11k2

(a)x2!#%,

c~x12x2.d/2!5~2p!21t~k!exp@ i ~k1
(b)x11k2

(b)x2!#,

with k1
(a)5@(12g)/(11g)#k1

(b)1@2/(11g)#k2
(b) and k2

(a)

5@(g21)/(11g)#k2
(b)1@2g/(11g)#k1

(b) . It is easy to see
that these relations between thek’s are exactly the ones fo
the exchange of momenta in a collision of two classical i
penetrable particles~recall that p5\k). Thus, when the
quantum particles tunnel through~reflect from! each other,
with probability ut(k)u2

„ur (k)u2
…, they do not change

~change exactly as in the classical case! their momenta. By
confining our quantum system, its eigenstatesC can be ex-
pressed as the superposition of all these scattering solu
@21#, analogous to our construction for the Green’s functi
written as a sum over scattering paths. In this sense,
proliferation of momenta in the classical system does a
occur in the quantum case. Here it also becomes clear whl
~or V0 in the case of a rectangular barrier interaction! cannot
be too small for the system to be chaotic. This is because
exchange of momenta in the quantum case takes place
in the reflections, which occur with probabilityur u2, thus
being small forl small.

For N identical particles with pairwise interactions, w
have the following.~a! For d potentials the Bethe ansa
~BA! leads toC(x1 , . . . ,xN)5(PC(P)exp@i(lkPl

xl#, where
the sum runs over all the permutations of the initial
$k1 , . . . ,kN%. The C(P)’s take care of both the form of th
interactions and the correct symmetries of the wave funct
~b! For long-range decaying potentials, Sutherland~see, for
instance, @22# and references therein! introduced the
asymptotic BA, applied when the many-bodyS matrix can
be decomposed into two-body matrices in the asympt
regionx1!x2!x3•••. ~c! For short-rangeV’s this decompo-
sition occurs in the regions outside the actions of the po
tial and the Schro¨dinger equation has as solution a line
combination of plane waves. So the asymptotic BA meth
does give the exactC in such regions. In our torus
case ~short-rangeV, any g) we have @16# C5A„r (k),
02620
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t(k)…exp@i(k1
(b)x11k2

(b)x2)#1B„r (k),t(k)…exp@i(k1
(a)x11k2

(a)x2)#,
valid for d/2,x12x2,L, and a similar expression ford/2
,x22x1,L. The kj ’s in the exponentials are not just pe
mutations of the initial set of momenta, they also include
the newkj ’s generated by the collisions.A and B depend
explicitly on the transmission and reflection amplitudes foV
@16#. This exact wave function is then a generalization of t
BA to our case. Extending this idea we should writeC for
the box case~in the ergodic regime! as a sum over an infinite
set of k’s due to the ‘‘quantum proliferation’’ of momenta
discussed above. Thus we cannot haveC in a closed form
and the system must present chaotic features as a co
quence of the Berry hypothesis@23#, which states that the
wave function of a chaotic system has the same statis
properties as a sum of random waves. In our case,C is
written as a random sum of an infinite number of pla
waves, where the randomness is caused by the ergodici
the p’s.

A very simple way to verify the above ideas is to write th
system statem asCm5(ncmnfn , wherefn are the eigen-
states of two noninteracting confined particles~which for the
box case are sine functions!, with n[(n1 ,n2) the momen-
tum quantum numbers~in order of increasing energy!. From
the previous discussions one would expect to have a m
broader distribution ofcn’s for a chaotic than for an inte
grable case. The spread of momenta due to the succe
collisions implies a much larger number of unperturb
eigenstates necessary to describeC accurately. We have
tested this for a large number of cases and a typical situa
is shown in Fig. 4. For the box case with ad interaction we
compare theucnu2 distribution for g51.6 ~see Fig. 1! with
g53, which is regular~the number of different momenta th
particles can have in this case is finite@20#!. To have a cri-
terion when comparing different systems we have chosen
state quantum numbersm in such a way that their energ
values are very close. We should mention that for a cha
system thecn’s are more or less distributed depending onm.
But their distribution is always much broader than those o
regular case.

Based on all the above results we conjecture that foN
confined particles of arbitrary masses and interacting p

FIG. 4. Typicalcn distributions for chaotic (g51.6) and regular
(g53) C ’s. Here the two states have their energies differing
only 0.1%.
1-4
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wise by short-range potentialsVi j , the totalC outside the
regions of interaction is a linear combination of plane wav
whose coefficients are related to the quantumr i j ’s and t i j ’s,
and thek’s in the exponentials are the same as the o
generated by collisions in the classical case. Obviously,
can obtainC in a closed form only if the total number ofk’s
is finite. Thus one can affirm that forN>3 both the torus and
the box cases present quantum chaos~except for some value
of g) since classically they are ergodic@20#.
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We finally mention that some of our results can be int
preted in terms of analogies with triangular and rhomb
billiards @24#. However, those analogies do not work in a
cases, as will be the subject of a future contribution~see also
@17#!.
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